This is the multi-page printable view of this section. Click here to print.
Security
- 1: Overview of Cloud Native Security
- 2: Pod Security Standards
- 3: Pod Security Admission
- 4: Pod Security Policies
- 5: Security For Windows Nodes
- 6: Controlling Access to the Kubernetes API
- 7: Role Based Access Control Good Practices
- 8: Multi-tenancy
1 - Overview of Cloud Native Security
This overview defines a model for thinking about Kubernetes security in the context of Cloud Native security.
The 4C's of Cloud Native security
You can think about security in layers. The 4C's of Cloud Native security are Cloud, Clusters, Containers, and Code.
Each layer of the Cloud Native security model builds upon the next outermost layer. The Code layer benefits from strong base (Cloud, Cluster, Container) security layers. You cannot safeguard against poor security standards in the base layers by addressing security at the Code level.
Cloud
In many ways, the Cloud (or co-located servers, or the corporate datacenter) is the trusted computing base of a Kubernetes cluster. If the Cloud layer is vulnerable (or configured in a vulnerable way) then there is no guarantee that the components built on top of this base are secure. Each cloud provider makes security recommendations for running workloads securely in their environment.
Cloud provider security
If you are running a Kubernetes cluster on your own hardware or a different cloud provider, consult your documentation for security best practices. Here are links to some of the popular cloud providers' security documentation:
IaaS Provider | Link |
---|---|
Alibaba Cloud | https://www.alibabacloud.com/trust-center |
Amazon Web Services | https://aws.amazon.com/security/ |
Google Cloud Platform | https://cloud.google.com/security/ |
IBM Cloud | https://www.ibm.com/cloud/security |
Microsoft Azure | https://docs.microsoft.com/en-us/azure/security/azure-security |
Oracle Cloud Infrastructure | https://www.oracle.com/security/ |
VMWare VSphere | https://www.vmware.com/security/hardening-guides.html |
Infrastructure security
Suggestions for securing your infrastructure in a Kubernetes cluster:
Area of Concern for Kubernetes Infrastructure | Recommendation |
---|---|
Network access to API Server (Control plane) | All access to the Kubernetes control plane is not allowed publicly on the internet and is controlled by network access control lists restricted to the set of IP addresses needed to administer the cluster. |
Network access to Nodes (nodes) | Nodes should be configured to only accept connections (via network access control lists) from the control plane on the specified ports, and accept connections for services in Kubernetes of type NodePort and LoadBalancer. If possible, these nodes should not be exposed on the public internet entirely. |
Kubernetes access to Cloud Provider API | Each cloud provider needs to grant a different set of permissions to the Kubernetes control plane and nodes. It is best to provide the cluster with cloud provider access that follows the principle of least privilege for the resources it needs to administer. The Kops documentation provides information about IAM policies and roles. |
Access to etcd | Access to etcd (the datastore of Kubernetes) should be limited to the control plane only. Depending on your configuration, you should attempt to use etcd over TLS. More information can be found in the etcd documentation. |
etcd Encryption | Wherever possible it's a good practice to encrypt all storage at rest, and since etcd holds the state of the entire cluster (including Secrets) its disk should especially be encrypted at rest. |
Cluster
There are two areas of concern for securing Kubernetes:
- Securing the cluster components that are configurable
- Securing the applications which run in the cluster
Components of the Cluster
If you want to protect your cluster from accidental or malicious access and adopt good information practices, read and follow the advice about securing your cluster.
Components in the cluster (your application)
Depending on the attack surface of your application, you may want to focus on specific aspects of security. For example: If you are running a service (Service A) that is critical in a chain of other resources and a separate workload (Service B) which is vulnerable to a resource exhaustion attack, then the risk of compromising Service A is high if you do not limit the resources of Service B. The following table lists areas of security concerns and recommendations for securing workloads running in Kubernetes:
Area of Concern for Workload Security | Recommendation |
---|---|
RBAC Authorization (Access to the Kubernetes API) | https://kubernetes.io/docs/reference/access-authn-authz/rbac/ |
Authentication | https://kubernetes.io/docs/concepts/security/controlling-access/ |
Application secrets management (and encrypting them in etcd at rest) | https://kubernetes.io/docs/concepts/configuration/secret/ https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/ |
Ensuring that pods meet defined Pod Security Standards | https://kubernetes.io/docs/concepts/security/pod-security-standards/#policy-instantiation |
Quality of Service (and Cluster resource management) | https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/ |
Network Policies | https://kubernetes.io/docs/concepts/services-networking/network-policies/ |
TLS for Kubernetes Ingress | https://kubernetes.io/docs/concepts/services-networking/ingress/#tls |
Container
Container security is outside the scope of this guide. Here are general recommendations and links to explore this topic:
Area of Concern for Containers | Recommendation |
---|---|
Container Vulnerability Scanning and OS Dependency Security | As part of an image build step, you should scan your containers for known vulnerabilities. |
Image Signing and Enforcement | Sign container images to maintain a system of trust for the content of your containers. |
Disallow privileged users | When constructing containers, consult your documentation for how to create users inside of the containers that have the least level of operating system privilege necessary in order to carry out the goal of the container. |
Use container runtime with stronger isolation | Select container runtime classes that provide stronger isolation |
Code
Application code is one of the primary attack surfaces over which you have the most control. While securing application code is outside of the Kubernetes security topic, here are recommendations to protect application code:
Code security
Area of Concern for Code | Recommendation |
---|---|
Access over TLS only | If your code needs to communicate by TCP, perform a TLS handshake with the client ahead of time. With the exception of a few cases, encrypt everything in transit. Going one step further, it's a good idea to encrypt network traffic between services. This can be done through a process known as mutual TLS authentication or mTLS which performs a two sided verification of communication between two certificate holding services. |
Limiting port ranges of communication | This recommendation may be a bit self-explanatory, but wherever possible you should only expose the ports on your service that are absolutely essential for communication or metric gathering. |
3rd Party Dependency Security | It is a good practice to regularly scan your application's third party libraries for known security vulnerabilities. Each programming language has a tool for performing this check automatically. |
Static Code Analysis | Most languages provide a way for a snippet of code to be analyzed for any potentially unsafe coding practices. Whenever possible you should perform checks using automated tooling that can scan codebases for common security errors. Some of the tools can be found at: https://owasp.org/www-community/Source_Code_Analysis_Tools |
Dynamic probing attacks | There are a few automated tools that you can run against your service to try some of the well known service attacks. These include SQL injection, CSRF, and XSS. One of the most popular dynamic analysis tools is the OWASP Zed Attack proxy tool. |
What's next
Learn about related Kubernetes security topics:
2 - Pod Security Standards
The Pod Security Standards define three different policies to broadly cover the security spectrum. These policies are cumulative and range from highly-permissive to highly-restrictive. This guide outlines the requirements of each policy.
Profile | Description |
---|---|
Privileged | Unrestricted policy, providing the widest possible level of permissions. This policy allows for known privilege escalations. |
Baseline | Minimally restrictive policy which prevents known privilege escalations. Allows the default (minimally specified) Pod configuration. |
Restricted | Heavily restricted policy, following current Pod hardening best practices. |
Profile Details
Privileged
The Privileged policy is purposely-open, and entirely unrestricted. This type of policy is typically aimed at system- and infrastructure-level workloads managed by privileged, trusted users.
The Privileged policy is defined by an absence of restrictions. Allow-by-default mechanisms (such as gatekeeper) may be Privileged by default. In contrast, for a deny-by-default mechanism (such as Pod Security Policy) the Privileged policy should disable all restrictions.
Baseline
The Baseline policy is aimed at ease of adoption for common containerized workloads while preventing known privilege escalations. This policy is targeted at application operators and developers of non-critical applications. The following listed controls should be enforced/disallowed:
*
) indicate all elements in a list. For example,
spec.containers[*].securityContext
refers to the Security Context object for all defined
containers. If any of the listed containers fails to meet the requirements, the entire pod will
fail validation.
Control | Policy |
---|---|
HostProcess |
Windows pods offer the ability to run HostProcess containers which enables privileged access to the Windows node. Privileged access to the host is disallowed in the baseline policy.
FEATURE STATE:
Kubernetes v1.23 [beta]
Restricted Fields
Allowed Values
|
Host Namespaces |
Sharing the host namespaces must be disallowed. Restricted Fields
Allowed Values
|
Privileged Containers |
Privileged Pods disable most security mechanisms and must be disallowed. Restricted Fields
Allowed Values
|
Capabilities |
Adding additional capabilities beyond those listed below must be disallowed. Restricted Fields
Allowed Values
|
HostPath Volumes |
HostPath volumes must be forbidden. Restricted Fields
Allowed Values
|
Host Ports |
HostPorts should be disallowed, or at minimum restricted to a known list. Restricted Fields
Allowed Values
|
AppArmor |
On supported hosts, the Restricted Fields
Allowed Values
|
SELinux |
Setting the SELinux type is restricted, and setting a custom SELinux user or role option is forbidden. Restricted Fields
Allowed Values
Restricted Fields
Allowed Values
|
/proc Mount Type |
The default Restricted Fields
Allowed Values
|
Seccomp |
Seccomp profile must not be explicitly set to Restricted Fields
Allowed Values
|
Sysctls |
Sysctls can disable security mechanisms or affect all containers on a host, and should be disallowed except for an allowed "safe" subset. A sysctl is considered safe if it is namespaced in the container or the Pod, and it is isolated from other Pods or processes on the same Node. Restricted Fields
Allowed Values
|
Restricted
The Restricted policy is aimed at enforcing current Pod hardening best practices, at the expense of some compatibility. It is targeted at operators and developers of security-critical applications, as well as lower-trust users. The following listed controls should be enforced/disallowed:
*
) indicate all elements in a list. For example,
spec.containers[*].securityContext
refers to the Security Context object for all defined
containers. If any of the listed containers fails to meet the requirements, the entire pod will
fail validation.
Control | Policy |
Everything from the baseline profile. | |
Volume Types |
The restricted policy only permits the following volume types. Restricted Fields
Allowed Values Every item in thespec.volumes[*] list must set one of the following fields to a non-null value:
|
Privilege Escalation (v1.8+) |
Privilege escalation (such as via set-user-ID or set-group-ID file mode) should not be allowed. Restricted Fields
Allowed Values
|
Running as Non-root |
Containers must be required to run as non-root users. Restricted Fields
Allowed Values
nil if the pod-level
spec.securityContext.runAsNonRoot is set to true .
|
Running as Non-root user (v1.23+) |
Containers must not set runAsUser to 0 Restricted Fields
Allowed Values
|
Seccomp (v1.19+) |
Seccomp profile must be explicitly set to one of the allowed values. Both the Restricted Fields
Allowed Values
nil if the pod-level
spec.securityContext.seccompProfile.type field is set appropriately.
Conversely, the pod-level field may be undefined/nil if _all_ container-
level fields are set.
|
Capabilities (v1.22+) |
Containers must drop Restricted Fields
Allowed Values
Restricted Fields
Allowed Values
|
Policy Instantiation
Decoupling policy definition from policy instantiation allows for a common understanding and consistent language of policies across clusters, independent of the underlying enforcement mechanism.
As mechanisms mature, they will be defined below on a per-policy basis. The methods of enforcement of individual policies are not defined here.
Pod Security Admission Controller
PodSecurityPolicy (Deprecated)
Alternatives
Other alternatives for enforcing policies are being developed in the Kubernetes ecosystem, such as:
FAQ
Why isn't there a profile between privileged and baseline?
The three profiles defined here have a clear linear progression from most secure (restricted) to least secure (privileged), and cover a broad set of workloads. Privileges required above the baseline policy are typically very application specific, so we do not offer a standard profile in this niche. This is not to say that the privileged profile should always be used in this case, but that policies in this space need to be defined on a case-by-case basis.
SIG Auth may reconsider this position in the future, should a clear need for other profiles arise.
What's the difference between a security profile and a security context?
Security Contexts configure Pods and Containers at runtime. Security contexts are defined as part of the Pod and container specifications in the Pod manifest, and represent parameters to the container runtime.
Security profiles are control plane mechanisms to enforce specific settings in the Security Context, as well as other related parameters outside the Security Context. As of July 2021, Pod Security Policies are deprecated in favor of the built-in Pod Security Admission Controller.
What profiles should I apply to my Windows Pods?
Windows in Kubernetes has some limitations and differentiators from standard Linux-based workloads. Specifically, many of the Pod SecurityContext fields have no effect on Windows. As such, no standardized Pod Security profiles currently exist.
If you apply the restricted profile for a Windows pod, this may have an impact on the pod at runtime. The restricted profile requires enforcing Linux-specific restrictions (such as seccomp profile, and disallowing privilege escalation). If the kubelet and / or its container runtime ignore these Linux-specific values, then the Windows pod should still work normally within the restricted profile. However, the lack of enforcement means that there is no additional restriction, for Pods that use Windows containers, compared to the baseline profile.
The use of the HostProcess flag to create a HostProcess pod should only be done in alignment with the privileged policy. Creation of a Windows HostProcess pod is blocked under the baseline and restricted policies, so any HostProcess pod should be considered privileged.
What about sandboxed Pods?
There is not currently an API standard that controls whether a Pod is considered sandboxed or not. Sandbox Pods may be identified by the use of a sandboxed runtime (such as gVisor or Kata Containers), but there is no standard definition of what a sandboxed runtime is.
The protections necessary for sandboxed workloads can differ from others. For example, the need to restrict privileged permissions is lessened when the workload is isolated from the underlying kernel. This allows for workloads requiring heightened permissions to still be isolated.
Additionally, the protection of sandboxed workloads is highly dependent on the method of sandboxing. As such, no single recommended profile is recommended for all sandboxed workloads.
3 - Pod Security Admission
Kubernetes v1.23 [beta]
The Kubernetes Pod Security Standards define different isolation levels for Pods. These standards let you define how you want to restrict the behavior of pods in a clear, consistent fashion.
As a beta feature, Kubernetes offers a built-in Pod Security admission controller, the successor to PodSecurityPolicies. Pod security restrictions are applied at the namespace level when pods are created.
Before you begin
To use this mechanism, your cluster must enforce Pod Security admission.
Built-in Pod Security admission enforcement
From Kubernetes v1.23, the PodSecurity
feature gate is a beta feature and is enabled by default.
This page is part of the documentation for Kubernetes v1.24.
If you are running a different version of Kubernetes, consult the documentation for that release.
Alternative: installing the PodSecurity
admission webhook
The PodSecurity
admission logic is also available as a validating admission webhook. This implementation is also beta.
For environments where the built-in PodSecurity
admission plugin cannot be enabled, you can instead enable that logic via a validating admission webhook.
A pre-built container image, certificate generation scripts, and example manifests are available at https://git.k8s.io/pod-security-admission/webhook.
To install:
git clone https://github.com/kubernetes/pod-security-admission.git
cd pod-security-admission/webhook
make certs
kubectl apply -k .
Pod Security levels
Pod Security admission places requirements on a Pod's Security
Context and other related fields according
to the three levels defined by the Pod Security
Standards: privileged
, baseline
, and
restricted
. Refer to the Pod Security Standards
page for an in-depth look at those requirements.
Pod Security Admission labels for namespaces
Once the feature is enabled or the webhook is installed, you can configure namespaces to define the admission control mode you want to use for pod security in each namespace. Kubernetes defines a set of labels that you can set to define which of the predefined Pod Security Standard levels you want to use for a namespace. The label you select defines what action the control plane takes if a potential violation is detected:
Mode | Description |
---|---|
enforce | Policy violations will cause the pod to be rejected. |
audit | Policy violations will trigger the addition of an audit annotation to the event recorded in the audit log, but are otherwise allowed. |
warn | Policy violations will trigger a user-facing warning, but are otherwise allowed. |
A namespace can configure any or all modes, or even set a different level for different modes.
For each mode, there are two labels that determine the policy used:
# The per-mode level label indicates which policy level to apply for the mode.
#
# MODE must be one of `enforce`, `audit`, or `warn`.
# LEVEL must be one of `privileged`, `baseline`, or `restricted`.
pod-security.kubernetes.io/<MODE>: <LEVEL>
# Optional: per-mode version label that can be used to pin the policy to the
# version that shipped with a given Kubernetes minor version (for example v1.24).
#
# MODE must be one of `enforce`, `audit`, or `warn`.
# VERSION must be a valid Kubernetes minor version, or `latest`.
pod-security.kubernetes.io/<MODE>-version: <VERSION>
Check out Enforce Pod Security Standards with Namespace Labels to see example usage.
Workload resources and Pod templates
Pods are often created indirectly, by creating a workload object such as a Deployment or Job. The workload object defines a Pod template and a controller for the workload resource creates Pods based on that template. To help catch violations early, both the audit and warning modes are applied to the workload resources. However, enforce mode is not applied to workload resources, only to the resulting pod objects.
Exemptions
You can define exemptions from pod security enforcement in order to allow the creation of pods that would have otherwise been prohibited due to the policy associated with a given namespace. Exemptions can be statically configured in the Admission Controller configuration.
Exemptions must be explicitly enumerated. Requests meeting exemption criteria are ignored by the
Admission Controller (all enforce
, audit
and warn
behaviors are skipped). Exemption dimensions include:
- Usernames: requests from users with an exempt authenticated (or impersonated) username are ignored.
- RuntimeClassNames: pods and workload resources specifying an exempt runtime class name are ignored.
- Namespaces: pods and workload resources in an exempt namespace are ignored.
system:serviceaccount:kube-system:replicaset-controller
)
should generally not be exempted, as doing so would implicitly exempt any user that can create the
corresponding workload resource.
Updates to the following pod fields are exempt from policy checks, meaning that if a pod update request only changes these fields, it will not be denied even if the pod is in violation of the current policy level:
- Any metadata updates except changes to the seccomp or AppArmor annotations:
seccomp.security.alpha.kubernetes.io/pod
(deprecated)container.seccomp.security.alpha.kubernetes.io/*
(deprecated)container.apparmor.security.beta.kubernetes.io/*
- Valid updates to
.spec.activeDeadlineSeconds
- Valid updates to
.spec.tolerations
What's next
4 - Pod Security Policies
Kubernetes v1.21 [deprecated]
Pod Security Policies enable fine-grained authorization of pod creation and updates.
What is a Pod Security Policy?
A Pod Security Policy is a cluster-level resource that controls security sensitive aspects of the pod specification. The PodSecurityPolicy objects define a set of conditions that a pod must run with in order to be accepted into the system, as well as defaults for the related fields. They allow an administrator to control the following:
Control Aspect | Field Names |
---|---|
Running of privileged containers | privileged |
Usage of host namespaces | hostPID , hostIPC |
Usage of host networking and ports | hostNetwork , hostPorts |
Usage of volume types | volumes |
Usage of the host filesystem | allowedHostPaths |
Allow specific FlexVolume drivers | allowedFlexVolumes |
Allocating an FSGroup that owns the pod's volumes | fsGroup |
Requiring the use of a read only root file system | readOnlyRootFilesystem |
The user and group IDs of the container | runAsUser , runAsGroup , supplementalGroups |
Restricting escalation to root privileges | allowPrivilegeEscalation , defaultAllowPrivilegeEscalation |
Linux capabilities | defaultAddCapabilities , requiredDropCapabilities , allowedCapabilities |
The SELinux context of the container | seLinux |
The Allowed Proc Mount types for the container | allowedProcMountTypes |
The AppArmor profile used by containers | annotations |
The seccomp profile used by containers | annotations |
The sysctl profile used by containers | forbiddenSysctls ,allowedUnsafeSysctls |
Enabling Pod Security Policies
Pod security policy control is implemented as an optional admission controller. PodSecurityPolicies are enforced by enabling the admission controller, but doing so without authorizing any policies will prevent any pods from being created in the cluster.
Since the pod security policy API (policy/v1beta1/podsecuritypolicy
) is
enabled independently of the admission controller, for existing clusters it is
recommended that policies are added and authorized before enabling the admission
controller.
Authorizing Policies
When a PodSecurityPolicy resource is created, it does nothing. In order to use
it, the requesting user or target pod's
service account
must be authorized to use the policy, by allowing the use
verb on the policy.
Most Kubernetes pods are not created directly by users. Instead, they are typically created indirectly as part of a Deployment, ReplicaSet, or other templated controller via the controller manager. Granting the controller access to the policy would grant access for all pods created by that controller, so the preferred method for authorizing policies is to grant access to the pod's service account (see example).
Via RBAC
RBAC is a standard Kubernetes authorization mode, and can easily be used to authorize use of policies.
First, a Role
or ClusterRole
needs to grant access to use
the desired
policies. The rules to grant access look like this:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: <role name>
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames:
- <list of policies to authorize>
Then the (Cluster)Role
is bound to the authorized user(s):
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: <binding name>
roleRef:
kind: ClusterRole
name: <role name>
apiGroup: rbac.authorization.k8s.io
subjects:
# Authorize all service accounts in a namespace (recommended):
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:serviceaccounts:<authorized namespace>
# Authorize specific service accounts (not recommended):
- kind: ServiceAccount
name: <authorized service account name>
namespace: <authorized pod namespace>
# Authorize specific users (not recommended):
- kind: User
apiGroup: rbac.authorization.k8s.io
name: <authorized user name>
If a RoleBinding
(not a ClusterRoleBinding
) is used, it will only grant
usage for pods being run in the same namespace as the binding. This can be
paired with system groups to grant access to all pods run in the namespace:
# Authorize all service accounts in a namespace:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:serviceaccounts
# Or equivalently, all authenticated users in a namespace:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:authenticated
For more examples of RBAC bindings, see RoleBinding examples. For a complete example of authorizing a PodSecurityPolicy, see below.
Recommended Practice
PodSecurityPolicy is being replaced by a new, simplified PodSecurity
admission controller.
For more details on this change, see
PodSecurityPolicy Deprecation: Past, Present, and Future.
Follow these guidelines to simplify migration from PodSecurityPolicy to the
new admission controller:
-
Limit your PodSecurityPolicies to the policies defined by the Pod Security Standards:
-
Only bind PSPs to entire namespaces, by using the
system:serviceaccounts:<namespace>
group (where<namespace>
is the target namespace). For example:apiVersion: rbac.authorization.k8s.io/v1 # This cluster role binding allows all pods in the "development" namespace to use the baseline PSP. kind: ClusterRoleBinding metadata: name: psp-baseline-namespaces roleRef: kind: ClusterRole name: psp-baseline apiGroup: rbac.authorization.k8s.io subjects: - kind: Group name: system:serviceaccounts:development apiGroup: rbac.authorization.k8s.io - kind: Group name: system:serviceaccounts:canary apiGroup: rbac.authorization.k8s.io
Troubleshooting
-
The controller manager must be run against the secured API port and must not have superuser permissions. See Controlling Access to the Kubernetes API to learn about API server access controls.
If the controller manager connected through the trusted API port (also known as thelocalhost
listener), requests would bypass authentication and authorization modules; all PodSecurityPolicy objects would be allowed, and users would be able to create grant themselves the ability to create privileged containers.For more details on configuring controller manager authorization, see Controller Roles.
Policy Order
In addition to restricting pod creation and update, pod security policies can also be used to provide default values for many of the fields that it controls. When multiple policies are available, the pod security policy controller selects policies according to the following criteria:
- PodSecurityPolicies which allow the pod as-is, without changing defaults or mutating the pod, are preferred. The order of these non-mutating PodSecurityPolicies doesn't matter.
- If the pod must be defaulted or mutated, the first PodSecurityPolicy (ordered by name) to allow the pod is selected.
When a Pod is validated against a PodSecurityPolicy, a kubernetes.io/psp
annotation
is added to the Pod, with the name of the PodSecurityPolicy as the annotation value.
Example
This example assumes you have a running cluster with the PodSecurityPolicy admission controller enabled and you have cluster admin privileges.
Set up
Set up a namespace and a service account to act as for this example. We'll use this service account to mock a non-admin user.
kubectl create namespace psp-example
kubectl create serviceaccount -n psp-example fake-user
kubectl create rolebinding -n psp-example fake-editor --clusterrole=edit --serviceaccount=psp-example:fake-user
To make it clear which user we're acting as and save some typing, create 2 aliases:
alias kubectl-admin='kubectl -n psp-example'
alias kubectl-user='kubectl --as=system:serviceaccount:psp-example:fake-user -n psp-example'
Create a policy and a pod
This is a policy that prevents the creation of privileged pods. The name of a PodSecurityPolicy object must be a valid DNS subdomain name.
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: example
spec:
privileged: false # Don't allow privileged pods!
# The rest fills in some required fields.
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
runAsUser:
rule: RunAsAny
fsGroup:
rule: RunAsAny
volumes:
- '*'
And create it with kubectl:
kubectl-admin create -f https://k8s.io/examples/policy/example-psp.yaml
Now, as the unprivileged user, try to create a simple pod:
kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
name: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause
EOF
The output is similar to this:
Error from server (Forbidden): error when creating "STDIN": pods "pause" is forbidden: unable to validate against any pod security policy: []
What happened? Although the PodSecurityPolicy was created, neither the
pod's service account nor fake-user
have permission to use the new policy:
kubectl-user auth can-i use podsecuritypolicy/example
The output is similar to this:
no
Create the rolebinding to grant fake-user
the use
verb on the example
policy:
kubectl-admin create role psp:unprivileged \
--verb=use \
--resource=podsecuritypolicy \
--resource-name=example
role "psp:unprivileged" created
kubectl-admin create rolebinding fake-user:psp:unprivileged \
--role=psp:unprivileged \
--serviceaccount=psp-example:fake-user
rolebinding "fake-user:psp:unprivileged" created
kubectl-user auth can-i use podsecuritypolicy/example
yes
Now retry creating the pod:
kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
name: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause
EOF
The output is similar to this
pod "pause" created
It works as expected! You can verify that the pod was validated against the newly created PodSecurityPolicy:
kubectl-user get pod pause -o yaml | grep kubernetes.io/psp
The output is similar to this
kubernetes.io/psp: example
But any attempts to create a privileged pod should still be denied:
kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
name: privileged
spec:
containers:
- name: pause
image: k8s.gcr.io/pause
securityContext:
privileged: true
EOF
The output is similar to this:
Error from server (Forbidden): error when creating "STDIN": pods "privileged" is forbidden: unable to validate against any pod security policy: [spec.containers[0].securityContext.privileged: Invalid value: true: Privileged containers are not allowed]
Delete the pod before moving on:
kubectl-user delete pod pause
Run another pod
Let's try that again, slightly differently:
kubectl-user create deployment pause --image=k8s.gcr.io/pause
deployment "pause" created
kubectl-user get pods
No resources found.
kubectl-user get events | head -n 2
LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGE
1m 2m 15 pause-7774d79b5 ReplicaSet Warning FailedCreate replicaset-controller Error creating: pods "pause-7774d79b5-" is forbidden: no providers available to validate pod request
What happened? We already bound the psp:unprivileged
role for our fake-user
,
why are we getting the error Error creating: pods "pause-7774d79b5-" is forbidden: no providers available to validate pod request
? The answer lies in
the source - replicaset-controller
. Fake-user successfully created the
deployment (which successfully created a replicaset), but when the replicaset
went to create the pod it was not authorized to use the example
podsecuritypolicy.
In order to fix this, bind the psp:unprivileged
role to the pod's service
account instead. In this case (since we didn't specify it) the service account
is default
:
kubectl-admin create rolebinding default:psp:unprivileged \
--role=psp:unprivileged \
--serviceaccount=psp-example:default
rolebinding "default:psp:unprivileged" created
Now if you give it a minute to retry, the replicaset-controller should eventually succeed in creating the pod:
kubectl-user get pods --watch
NAME READY STATUS RESTARTS AGE
pause-7774d79b5-qrgcb 0/1 Pending 0 1s
pause-7774d79b5-qrgcb 0/1 Pending 0 1s
pause-7774d79b5-qrgcb 0/1 ContainerCreating 0 1s
pause-7774d79b5-qrgcb 1/1 Running 0 2s
Clean up
Delete the namespace to clean up most of the example resources:
kubectl-admin delete ns psp-example
namespace "psp-example" deleted
Note that PodSecurityPolicy
resources are not namespaced, and must be cleaned
up separately:
kubectl-admin delete psp example
podsecuritypolicy "example" deleted
Example Policies
This is the least restrictive policy you can create, equivalent to not using the pod security policy admission controller:
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: privileged
annotations:
seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
spec:
privileged: true
allowPrivilegeEscalation: true
allowedCapabilities:
- '*'
volumes:
- '*'
hostNetwork: true
hostPorts:
- min: 0
max: 65535
hostIPC: true
hostPID: true
runAsUser:
rule: 'RunAsAny'
seLinux:
rule: 'RunAsAny'
supplementalGroups:
rule: 'RunAsAny'
fsGroup:
rule: 'RunAsAny'
This is an example of a restrictive policy that requires users to run as an unprivileged user, blocks possible escalations to root, and requires use of several security mechanisms.
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: restricted
annotations:
# docker/default identifies a profile for seccomp, but it is not particularly tied to the Docker runtime
seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default,runtime/default'
apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'
spec:
privileged: false
# Required to prevent escalations to root.
allowPrivilegeEscalation: false
requiredDropCapabilities:
- ALL
# Allow core volume types.
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
- 'downwardAPI'
# Assume that ephemeral CSI drivers & persistentVolumes set up by the cluster admin are safe to use.
- 'csi'
- 'persistentVolumeClaim'
- 'ephemeral'
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:
# Require the container to run without root privileges.
rule: 'MustRunAsNonRoot'
seLinux:
# This policy assumes the nodes are using AppArmor rather than SELinux.
rule: 'RunAsAny'
supplementalGroups:
rule: 'MustRunAs'
ranges:
# Forbid adding the root group.
- min: 1
max: 65535
fsGroup:
rule: 'MustRunAs'
ranges:
# Forbid adding the root group.
- min: 1
max: 65535
readOnlyRootFilesystem: false
See Pod Security Standards for more examples.
Policy Reference
Privileged
Privileged - determines if any container in a pod can enable privileged mode. By default a container is not allowed to access any devices on the host, but a "privileged" container is given access to all devices on the host. This allows the container nearly all the same access as processes running on the host. This is useful for containers that want to use linux capabilities like manipulating the network stack and accessing devices.
Host namespaces
HostPID - Controls whether the pod containers can share the host process ID namespace. Note that when paired with ptrace this can be used to escalate privileges outside of the container (ptrace is forbidden by default).
HostIPC - Controls whether the pod containers can share the host IPC namespace.
HostNetwork - Controls whether the pod may use the node network namespace. Doing so gives the pod access to the loopback device, services listening on localhost, and could be used to snoop on network activity of other pods on the same node.
HostPorts - Provides a list of ranges of allowable ports in the host
network namespace. Defined as a list of HostPortRange
, with min
(inclusive)
and max
(inclusive). Defaults to no allowed host ports.
Volumes and file systems
Volumes - Provides a list of allowed volume types. The allowable values
correspond to the volume sources that are defined when creating a volume. For
the complete list of volume types, see Types of
Volumes. Additionally,
*
may be used to allow all volume types.
The recommended minimum set of allowed volumes for new PSPs are:
configMap
downwardAPI
emptyDir
persistentVolumeClaim
secret
projected
PersistentVolume
objects that
may be referenced by a PersistentVolumeClaim
, and hostPath type
PersistentVolumes
do not support read-only access mode. Only trusted users
should be granted permission to create PersistentVolume
objects.
FSGroup - Controls the supplemental group applied to some volumes.
- MustRunAs - Requires at least one
range
to be specified. Uses the minimum value of the first range as the default. Validates against all ranges. - MayRunAs - Requires at least one
range
to be specified. AllowsFSGroups
to be left unset without providing a default. Validates against all ranges ifFSGroups
is set. - RunAsAny - No default provided. Allows any
fsGroup
ID to be specified.
AllowedHostPaths - This specifies a list of host paths that are allowed
to be used by hostPath volumes. An empty list means there is no restriction on
host paths used. This is defined as a list of objects with a single pathPrefix
field, which allows hostPath volumes to mount a path that begins with an
allowed prefix, and a readOnly
field indicating it must be mounted read-only.
For example:
allowedHostPaths:
# This allows "/foo", "/foo/", "/foo/bar" etc., but
# disallows "/fool", "/etc/foo" etc.
# "/foo/../" is never valid.
- pathPrefix: "/foo"
readOnly: true # only allow read-only mounts
There are many ways a container with unrestricted access to the host filesystem can escalate privileges, including reading data from other containers, and abusing the credentials of system services, such as Kubelet.
Writeable hostPath directory volumes allow containers to write
to the filesystem in ways that let them traverse the host filesystem outside the pathPrefix
.
readOnly: true
, available in Kubernetes 1.11+, must be used on all allowedHostPaths
to effectively limit access to the specified pathPrefix
.
ReadOnlyRootFilesystem - Requires that containers must run with a read-only root filesystem (i.e. no writable layer).
FlexVolume drivers
This specifies a list of FlexVolume drivers that are allowed to be used
by flexvolume. An empty list or nil means there is no restriction on the drivers.
Please make sure volumes
field contains the
flexVolume
volume type; no FlexVolume driver is allowed otherwise.
For example:
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: allow-flex-volumes
spec:
# ... other spec fields
volumes:
- flexVolume
allowedFlexVolumes:
- driver: example/lvm
- driver: example/cifs
Users and groups
RunAsUser - Controls which user ID the containers are run with.
- MustRunAs - Requires at least one
range
to be specified. Uses the minimum value of the first range as the default. Validates against all ranges. - MustRunAsNonRoot - Requires that the pod be submitted with a non-zero
runAsUser
or have theUSER
directive defined (using a numeric UID) in the image. Pods which have specified neitherrunAsNonRoot
norrunAsUser
settings will be mutated to setrunAsNonRoot=true
, thus requiring a defined non-zero numericUSER
directive in the container. No default provided. SettingallowPrivilegeEscalation=false
is strongly recommended with this strategy. - RunAsAny - No default provided. Allows any
runAsUser
to be specified.
RunAsGroup - Controls which primary group ID the containers are run with.
- MustRunAs - Requires at least one
range
to be specified. Uses the minimum value of the first range as the default. Validates against all ranges. - MayRunAs - Does not require that RunAsGroup be specified. However, when RunAsGroup is specified, they have to fall in the defined range.
- RunAsAny - No default provided. Allows any
runAsGroup
to be specified.
SupplementalGroups - Controls which group IDs containers add.
- MustRunAs - Requires at least one
range
to be specified. Uses the minimum value of the first range as the default. Validates against all ranges. - MayRunAs - Requires at least one
range
to be specified. AllowssupplementalGroups
to be left unset without providing a default. Validates against all ranges ifsupplementalGroups
is set. - RunAsAny - No default provided. Allows any
supplementalGroups
to be specified.
Privilege Escalation
These options control the allowPrivilegeEscalation
container option. This bool
directly controls whether the
no_new_privs
flag gets set on the container process. This flag will prevent setuid
binaries
from changing the effective user ID, and prevent files from enabling extra
capabilities (e.g. it will prevent the use of the ping
tool). This behavior is
required to effectively enforce MustRunAsNonRoot
.
AllowPrivilegeEscalation - Gates whether or not a user is allowed to set the
security context of a container to allowPrivilegeEscalation=true
. This
defaults to allowed so as to not break setuid binaries. Setting it to false
ensures that no child process of a container can gain more privileges than its parent.
DefaultAllowPrivilegeEscalation - Sets the default for the
allowPrivilegeEscalation
option. The default behavior without this is to allow
privilege escalation so as to not break setuid binaries. If that behavior is not
desired, this field can be used to default to disallow, while still permitting
pods to request allowPrivilegeEscalation
explicitly.
Capabilities
Linux capabilities provide a finer grained breakdown of the privileges traditionally associated with the superuser. Some of these capabilities can be used to escalate privileges or for container breakout, and may be restricted by the PodSecurityPolicy. For more details on Linux capabilities, see capabilities(7).
The following fields take a list of capabilities, specified as the capability
name in ALL_CAPS without the CAP_
prefix.
AllowedCapabilities - Provides a list of capabilities that are allowed to be added
to a container. The default set of capabilities are implicitly allowed. The
empty set means that no additional capabilities may be added beyond the default
set. *
can be used to allow all capabilities.
RequiredDropCapabilities - The capabilities which must be dropped from
containers. These capabilities are removed from the default set, and must not be
added. Capabilities listed in RequiredDropCapabilities
must not be included in
AllowedCapabilities
or DefaultAddCapabilities
.
DefaultAddCapabilities - The capabilities which are added to containers by default, in addition to the runtime defaults. See the documentation for your container runtime for information on working with Linux capabilities.
SELinux
- MustRunAs - Requires
seLinuxOptions
to be configured. UsesseLinuxOptions
as the default. Validates againstseLinuxOptions
. - RunAsAny - No default provided. Allows any
seLinuxOptions
to be specified.
AllowedProcMountTypes
allowedProcMountTypes
is a list of allowed ProcMountTypes.
Empty or nil indicates that only the DefaultProcMountType
may be used.
DefaultProcMount
uses the container runtime defaults for readonly and masked
paths for /proc. Most container runtimes mask certain paths in /proc to avoid
accidental security exposure of special devices or information. This is denoted
as the string Default
.
The only other ProcMountType is UnmaskedProcMount
, which bypasses the
default masking behavior of the container runtime and ensures the newly
created /proc the container stays intact with no modifications. This is
denoted as the string Unmasked
.
AppArmor
Controlled via annotations on the PodSecurityPolicy. Refer to the AppArmor documentation.
Seccomp
As of Kubernetes v1.19, you can use the seccompProfile
field in the
securityContext
of Pods or containers to
control use of seccomp profiles.
In prior versions, seccomp was controlled by adding annotations to a Pod. The
same PodSecurityPolicies can be used with either version to enforce how these
fields or annotations are applied.
seccomp.security.alpha.kubernetes.io/defaultProfileName - Annotation that specifies the default seccomp profile to apply to containers. Possible values are:
-
unconfined
- Seccomp is not applied to the container processes (this is the default in Kubernetes), if no alternative is provided. -
runtime/default
- The default container runtime profile is used. -
docker/default
- The Docker default seccomp profile is used. Deprecated as of Kubernetes 1.11. Useruntime/default
instead. -
localhost/<path>
- Specify a profile as a file on the node located at<seccomp_root>/<path>
, where<seccomp_root>
is defined via the--seccomp-profile-root
flag on the Kubelet. If the--seccomp-profile-root
flag is not defined, the default path will be used, which is<root-dir>/seccomp
where<root-dir>
is specified by the--root-dir
flag.Note: The--seccomp-profile-root
flag is deprecated since Kubernetes v1.19. Users are encouraged to use the default path.
seccomp.security.alpha.kubernetes.io/allowedProfileNames - Annotation that
specifies which values are allowed for the pod seccomp annotations. Specified as
a comma-delimited list of allowed values. Possible values are those listed
above, plus *
to allow all profiles. Absence of this annotation means that the
default cannot be changed.
Sysctl
By default, all safe sysctls are allowed.
forbiddenSysctls
- excludes specific sysctls. You can forbid a combination of safe and unsafe sysctls in the list. To forbid setting any sysctls, use*
on its own.allowedUnsafeSysctls
- allows specific sysctls that had been disallowed by the default list, so long as these are not listed inforbiddenSysctls
.
Refer to the Sysctl documentation.
What's next
-
See PodSecurityPolicy Deprecation: Past, Present, and Future to learn about the future of pod security policy.
-
See Pod Security Standards for policy recommendations.
-
Refer to PodSecurityPolicy reference for the API details.
5 - Security For Windows Nodes
This page describes security considerations and best practices specific to the Windows operating system.
Protection for Secret data on nodes
On Windows, data from Secrets are written out in clear text onto the node's local storage (as compared to using tmpfs / in-memory filesystems on Linux). As a cluster operator, you should take both of the following additional measures:
- Use file ACLs to secure the Secrets' file location.
- Apply volume-level encryption using BitLocker.
Container users
RunAsUsername can be specified for Windows Pods or containers to execute the container processes as specific user. This is roughly equivalent to RunAsUser.
Windows containers offer two default user accounts, ContainerUser and ContainerAdministrator. The differences between these two user accounts are covered in When to use ContainerAdmin and ContainerUser user accounts within Microsoft's Secure Windows containers documentation.
Local users can be added to container images during the container build process.
- Nano Server based images run as
ContainerUser
by default - Server Core based images run as
ContainerAdministrator
by default
Windows containers can also run as Active Directory identities by utilizing Group Managed Service Accounts
Pod-level security isolation
Linux-specific pod security context mechanisms (such as SELinux, AppArmor, Seccomp, or custom POSIX capabilities) are not supported on Windows nodes.
Privileged containers are not supported on Windows. Instead HostProcess containers can be used on Windows to perform many of the tasks performed by privileged containers on Linux.
6 - Controlling Access to the Kubernetes API
This page provides an overview of controlling access to the Kubernetes API.
Users access the Kubernetes API using kubectl
,
client libraries, or by making REST requests. Both human users and
Kubernetes service accounts can be
authorized for API access.
When a request reaches the API, it goes through several stages, illustrated in the
following diagram:
Transport security
By default, the Kubernetes API server listens on port 6443 on the first non-localhost network interface, protected by TLS. In a typical production Kubernetes cluster, the API serves on port 443. The port can be changed with the --secure-port
, and the listening IP address with the --bind-address
flag.
The API server presents a certificate. This certificate may be signed using
a private certificate authority (CA), or based on a public key infrastructure linked
to a generally recognized CA. The certificate and corresponding private key can be set by using the --tls-cert-file
and --tls-private-key-file
flags.
If your cluster uses a private certificate authority, you need a copy of that CA
certificate configured into your ~/.kube/config
on the client, so that you can
trust the connection and be confident it was not intercepted.
Your client can present a TLS client certificate at this stage.
Authentication
Once TLS is established, the HTTP request moves to the Authentication step. This is shown as step 1 in the diagram. The cluster creation script or cluster admin configures the API server to run one or more Authenticator modules. Authenticators are described in more detail in Authentication.
The input to the authentication step is the entire HTTP request; however, it typically examines the headers and/or client certificate.
Authentication modules include client certificates, password, and plain tokens, bootstrap tokens, and JSON Web Tokens (used for service accounts).
Multiple authentication modules can be specified, in which case each one is tried in sequence, until one of them succeeds.
If the request cannot be authenticated, it is rejected with HTTP status code 401.
Otherwise, the user is authenticated as a specific username
, and the user name
is available to subsequent steps to use in their decisions. Some authenticators
also provide the group memberships of the user, while other authenticators
do not.
While Kubernetes uses usernames for access control decisions and in request logging,
it does not have a User
object nor does it store usernames or other information about
users in its API.
Authorization
After the request is authenticated as coming from a specific user, the request must be authorized. This is shown as step 2 in the diagram.
A request must include the username of the requester, the requested action, and the object affected by the action. The request is authorized if an existing policy declares that the user has permissions to complete the requested action.
For example, if Bob has the policy below, then he can read pods only in the namespace projectCaribou
:
{
"apiVersion": "abac.authorization.kubernetes.io/v1beta1",
"kind": "Policy",
"spec": {
"user": "bob",
"namespace": "projectCaribou",
"resource": "pods",
"readonly": true
}
}
If Bob makes the following request, the request is authorized because he is allowed to read objects in the projectCaribou
namespace:
{
"apiVersion": "authorization.k8s.io/v1beta1",
"kind": "SubjectAccessReview",
"spec": {
"resourceAttributes": {
"namespace": "projectCaribou",
"verb": "get",
"group": "unicorn.example.org",
"resource": "pods"
}
}
}
If Bob makes a request to write (create
or update
) to the objects in the projectCaribou
namespace, his authorization is denied. If Bob makes a request to read (get
) objects in a different namespace such as projectFish
, then his authorization is denied.
Kubernetes authorization requires that you use common REST attributes to interact with existing organization-wide or cloud-provider-wide access control systems. It is important to use REST formatting because these control systems might interact with other APIs besides the Kubernetes API.
Kubernetes supports multiple authorization modules, such as ABAC mode, RBAC Mode, and Webhook mode. When an administrator creates a cluster, they configure the authorization modules that should be used in the API server. If more than one authorization modules are configured, Kubernetes checks each module, and if any module authorizes the request, then the request can proceed. If all of the modules deny the request, then the request is denied (HTTP status code 403).
To learn more about Kubernetes authorization, including details about creating policies using the supported authorization modules, see Authorization.
Admission control
Admission Control modules are software modules that can modify or reject requests. In addition to the attributes available to Authorization modules, Admission Control modules can access the contents of the object that is being created or modified.
Admission controllers act on requests that create, modify, delete, or connect to (proxy) an object. Admission controllers do not act on requests that merely read objects. When multiple admission controllers are configured, they are called in order.
This is shown as step 3 in the diagram.
Unlike Authentication and Authorization modules, if any admission controller module rejects, then the request is immediately rejected.
In addition to rejecting objects, admission controllers can also set complex defaults for fields.
The available Admission Control modules are described in Admission Controllers.
Once a request passes all admission controllers, it is validated using the validation routines for the corresponding API object, and then written to the object store (shown as step 4).
Auditing
Kubernetes auditing provides a security-relevant, chronological set of records documenting the sequence of actions in a cluster. The cluster audits the activities generated by users, by applications that use the Kubernetes API, and by the control plane itself.
For more information, see Auditing.
What's next
Read more documentation on authentication, authorization and API access control:
- Authenticating
- Admission Controllers
- Authorization
- Certificate Signing Requests
- including CSR approval and certificate signing
- Service accounts
You can learn about:
- how Pods can use Secrets to obtain API credentials.
7 - Role Based Access Control Good Practices
Kubernetes RBAC is a key security control to ensure that cluster users and workloads have only the access to resources required to execute their roles. It is important to ensure that, when designing permissions for cluster users, the cluster administrator understands the areas where privilge escalation could occur, to reduce the risk of excessive access leading to security incidents.
The good practices laid out here should be read in conjunction with the general RBAC documentation.
General good practice
Least privilege
Ideally, minimal RBAC rights should be assigned to users and service accounts. Only permissions explicitly required for their operation should be used. While each cluster will be different, some general rules that can be applied are :
- Assign permissions at the namespace level where possible. Use RoleBindings as opposed to ClusterRoleBindings to give users rights only within a specific namespace.
- Avoid providing wildcard permissions when possible, especially to all resources. As Kubernetes is an extensible system, providing wildcard access gives rights not just to all object types that currently exist in the cluster, but also to all future object types which are created in the future.
- Administrators should not use
cluster-admin
accounts except where specifically needed. Providing a low privileged account with impersonation rights can avoid accidental modification of cluster resources. - Avoid adding users to the
system:masters
group. Any user who is a member of this group bypasses all RBAC rights checks and will always have unrestricted superuser access, which cannot be revoked by removing RoleBindings or ClusterRoleBindings. As an aside, if a cluster is using an authorization webhook, membership of this group also bypasses that webhook (requests from users who are members of that group are never sent to the webhook)
Minimize distribution of privileged tokens
Ideally, pods shouldn't be assigned service accounts that have been granted powerful permissions (for example, any of the rights listed under privilege escalation risks). In cases where a workload requires powerful permissions, consider the following practices:
- Limit the number of nodes running powerful pods. Ensure that any DaemonSets you run are necessary and are run with least privilege to limit the blast radius of container escapes.
- Avoid running powerful pods alongside untrusted or publicly-exposed ones. Consider using Taints and Toleration, NodeAffinity, or PodAntiAffinity to ensure pods don't run alongside untrusted or less-trusted Pods. Pay especial attention to situations where less-trustworthy Pods are not meeting the Restricted Pod Security Standard.
Hardening
Kubernetes defaults to providing access which may not be required in every cluster. Reviewing
the RBAC rights provided by default can provide opportunities for security hardening.
In general, changes should not be made to rights provided to system:
accounts some options
to harden cluster rights exist:
- Review bindings for the
system:unauthenticated
group and remove them where possible, as this gives access to anyone who can contact the API server at a network level. - Avoid the default auto-mounting of service account tokens by setting
automountServiceAccountToken: false
. For more details, see using default service account token. Setting this value for a Pod will overwrite the service account setting, workloads which require service account tokens can still mount them.
Periodic review
It is vital to periodically review the Kubernetes RBAC settings for redundant entries and possible privilege escalations. If an attacker is able to create a user account with the same name as a deleted user, they can automatically inherit all the rights of the deleted user, especially the rights assigned to that user.
Kubernetes RBAC - privilege escalation risks
Within Kubernetes RBAC there are a number of privileges which, if granted, can allow a user or a service account to escalate their privileges in the cluster or affect systems outside the cluster.
This section is intended to provide visibility of the areas where cluster operators should take care, to ensure that they do not inadvertently allow for more access to clusters than intended.
Listing secrets
It is generally clear that allowing get
access on Secrets will allow a user to read their contents.
It is also important to note that list
and watch
access also effectively allow for users to reveal the Secret contents.
For example, when a List response is returned (for example, via kubectl get secrets -A -o yaml
), the response
includes the contents of all Secrets.
Workload creation
Users who are able to create workloads (either Pods, or workload resources that manage Pods) will be able to gain access to the underlying node unless restrictions based on the Kubernetes Pod Security Standards are in place.
Users who can run privileged Pods can use that access to gain node access and potentially to further elevate their privileges. Where you do not fully trust a user or other principal with the ability to create suitably secure and isolated Pods, you should enforce either the Baseline or Restricted Pod Security Standard. You can use Pod Security admission or other (third party) mechanisms to implement that enforcement.
You can also use the deprecated PodSecurityPolicy mechanism to restrict users' abilities to create privileged Pods (N.B. PodSecurityPolicy is scheduled for removal in version 1.25).
Creating a workload in a namespace also grants indirect access to Secrets in that namespace. Creating a pod in kube-system or a similarly privileged namespace can grant a user access to Secrets they would not have through RBAC directly.
Persistent volume creation
As noted in the PodSecurityPolicy documentation, access to create PersistentVolumes can allow for escalation of access to the underlying host. Where access to persistent storage is required trusted administrators should create PersistentVolumes, and constrained users should use PersistentVolumeClaims to access that storage.
Access to proxy
subresource of Nodes
Users with access to the proxy sub-resource of node objects have rights to the Kubelet API, which allows for command execution on every pod on the node(s) to which they have rights. This access bypasses audit logging and admission control, so care should be taken before granting rights to this resource.
Escalate verb
Generally, the RBAC system prevents users from creating clusterroles with more rights than the user possesses.
The exception to this is the escalate
verb. As noted in the RBAC documentation,
users with this right can effectively escalate their privileges.
Bind verb
Similar to the escalate
verb, granting users this right allows for the bypass of Kubernetes
in-built protections against privilege escalation, allowing users to create bindings to
roles with rights they do not already have.
Impersonate verb
This verb allows users to impersonate and gain the rights of other users in the cluster. Care should be taken when granting it, to ensure that excessive permissions cannot be gained via one of the impersonated accounts.
CSRs and certificate issuing
The CSR API allows for users with create
rights to CSRs and update
rights on certificatesigningrequests/approval
where the signer is kubernetes.io/kube-apiserver-client
to create new client certificates
which allow users to authenticate to the cluster. Those client certificates can have arbitrary
names including duplicates of Kubernetes system components. This will effectively allow for privilege escalation.
Token request
Users with create
rights on serviceaccounts/token
can create TokenRequests to issue
tokens for existing service accounts.
Control admission webhooks
Users with control over validatingwebhookconfigurations
or mutatingwebhookconfigurations
can control webhooks that can read any object admitted to the cluster, and in the case of
mutating webhooks, also mutate admitted objects.
Kubernetes RBAC - denial of service risks
Object creation denial-of-service
Users who have rights to create objects in a cluster may be able to create sufficient large objects to create a denial of service condition either based on the size or number of objects, as discussed in etcd used by Kubernetes is vulnerable to OOM attack. This may be specifically relevant in multi-tenant clusters if semi-trusted or untrusted users are allowed limited access to a system.
One option for mitigation of this issue would be to use resource quotas to limit the quantity of objects which can be created.
What's next
- To learn more about RBAC, see the RBAC documentation.
8 - Multi-tenancy
This page provides an overview of available configuration options and best practices for cluster multi-tenancy.
Sharing clusters saves costs and simplifies administration. However, sharing clusters also presents challenges such as security, fairness, and managing noisy neighbors.
Clusters can be shared in many ways. In some cases, different applications may run in the same cluster. In other cases, multiple instances of the same application may run in the same cluster, one for each end user. All these types of sharing are frequently described using the umbrella term multi-tenancy.
While Kubernetes does not have first-class concepts of end users or tenants, it provides several features to help manage different tenancy requirements. These are discussed below.
Use cases
The first step to determining how to share your cluster is understanding your use case, so you can evaluate the patterns and tools available. In general, multi-tenancy in Kubernetes clusters falls into two broad categories, though many variations and hybrids are also possible.
Multiple teams
A common form of multi-tenancy is to share a cluster between multiple teams within an organization, each of whom may operate one or more workloads. These workloads frequently need to communicate with each other, and with other workloads located on the same or different clusters.
In this scenario, members of the teams often have direct access to Kubernetes resources via tools such as kubectl
, or indirect access through GitOps controllers or other types of release automation tools. There is often some level of trust between members of different teams, but Kubernetes policies such as RBAC, quotas, and network policies are essential to safely and fairly share clusters.
Multiple customers
The other major form of multi-tenancy frequently involves a Software-as-a-Service (SaaS) vendor running multiple instances of a workload for customers. This business model is so strongly associated with this deployment style that many people call it "SaaS tenancy." However, a better term might be "multi-customer tenancy,” since SaaS vendors may also use other deployment models, and this deployment model can also be used outside of SaaS.
In this scenario, the customers do not have access to the cluster; Kubernetes is invisible from their perspective and is only used by the vendor to manage the workloads. Cost optimization is frequently a critical concern, and Kubernetes policies are used to ensure that the workloads are strongly isolated from each other.
Terminology
Tenants
When discussing multi-tenancy in Kubernetes, there is no single definition for a "tenant". Rather, the definition of a tenant will vary depending on whether multi-team or multi-customer tenancy is being discussed.
In multi-team usage, a tenant is typically a team, where each team typically deploys a small number of workloads that scales with the complexity of the service. However, the definition of "team" may itself be fuzzy, as teams may be organized into higher-level divisions or subdivided into smaller teams.
By contrast, if each team deploys dedicated workloads for each new client, they are using a multi-customer model of tenancy. In this case, a "tenant" is simply a group of users who share a single workload. This may be as large as an entire company, or as small as a single team at that company.
In many cases, the same organization may use both definitions of "tenants" in different contexts. For example, a platform team may offer shared services such as security tools and databases to multiple internal “customers” and a SaaS vendor may also have multiple teams sharing a development cluster. Finally, hybrid architectures are also possible, such as a SaaS provider using a combination of per-customer workloads for sensitive data, combined with multi-tenant shared services.
Isolation
There are several ways to design and build multi-tenant solutions with Kubernetes. Each of these methods comes with its own set of tradeoffs that impact the isolation level, implementation effort, operational complexity, and cost of service.
A Kubernetes cluster consists of a control plane which runs Kubernetes software, and a data plane consisting of worker nodes where tenant workloads are executed as pods. Tenant isolation can be applied in both the control plane and the data plane based on organizational requirements.
The level of isolation offered is sometimes described using terms like “hard” multi-tenancy, which implies strong isolation, and “soft” multi-tenancy, which implies weaker isolation. In particular, "hard" multi-tenancy is often used to describe cases where the tenants do not trust each other, often from security and resource sharing perspectives (e.g. guarding against attacks such as data exfiltration or DoS). Since data planes typically have much larger attack surfaces, "hard" multi-tenancy often requires extra attention to isolating the data-plane, though control plane isolation also remains critical.
However, the terms "hard" and "soft" can often be confusing, as there is no single definition that will apply to all users. Rather, "hardness" or "softness" is better understood as a broad spectrum, with many different techniques that can be used to maintain different types of isolation in your clusters, based on your requirements.
In more extreme cases, it may be easier or necessary to forgo any cluster-level sharing at all and assign each tenant their dedicated cluster, possibly even running on dedicated hardware if VMs are not considered an adequate security boundary. This may be easier with managed Kubernetes clusters, where the overhead of creating and operating clusters is at least somewhat taken on by a cloud provider. The benefit of stronger tenant isolation must be evaluated against the cost and complexity of managing multiple clusters. The Multi-cluster SIG is responsible for addressing these types of use cases.
The remainder of this page focuses on isolation techniques used for shared Kubernetes clusters. However, even if you are considering dedicated clusters, it may be valuable to review these recommendations, as it will give you the flexibility to shift to shared clusters in the future if your needs or capabilities change.
Control plane isolation
Control plane isolation ensures that different tenants cannot access or affect each others' Kubernetes API resources.
Namespaces
In Kubernetes, a Namespace provides a mechanism for isolating groups of API resources within a single cluster. This isolation has two key dimensions:
-
Object names within a namespace can overlap with names in other namespaces, similar to files in folders. This allows tenants to name their resources without having to consider what other tenants are doing.
-
Many Kubernetes security policies are scoped to namespaces. For example, RBAC Roles and Network Policies are namespace-scoped resources. Using RBAC, Users and Service Accounts can be restricted to a namespace.
In a multi-tenant environment, a Namespace helps segment a tenant's workload into a logical and distinct management unit. In fact, a common practice is to isolate every workload in its own namespace, even if multiple workloads are operated by the same tenant. This ensures that each workload has its own identity and can be configured with an appropriate security policy.
The namespace isolation model requires configuration of several other Kubernetes resources, networking plugins, and adherence to security best practices to properly isolate tenant workloads. These considerations are discussed below.
Access controls
The most important type of isolation for the control plane is authorization. If teams or their workloads can access or modify each others' API resources, they can change or disable all other types of policies thereby negating any protection those policies may offer. As a result, it is critical to ensure that each tenant has the appropriate access to only the namespaces they need, and no more. This is known as the "Principle of Least Privilege."
Role-based access control (RBAC) is commonly used to enforce authorization in the Kubernetes control plane, for both users and workloads (service accounts). Roles and role bindings are Kubernetes objects that are used at a namespace level to enforce access control in your application; similar objects exist for authorizing access to cluster-level objects, though these are less useful for multi-tenant clusters.
In a multi-team environment, RBAC must be used to restrict tenants' access to the appropriate namespaces, and ensure that cluster-wide resources can only be accessed or modified by privileged users such as cluster administrators.
If a policy ends up granting a user more permissions than they need, this is likely a signal that the namespace containing the affected resources should be refactored into finer-grained namespaces. Namespace management tools may simplify the management of these finer-grained namespaces by applying common RBAC policies to different namespaces, while still allowing fine-grained policies where necessary.
Quotas
Kubernetes workloads consume node resources, like CPU and memory. In a multi-tenant environment, you can use Resource Quotas to manage resource usage of tenant workloads. For the multiple teams use case, where tenants have access to the Kubernetes API, you can use resource quotas to limit the number of API resources (for example: the number of Pods, or the number of ConfigMaps) that a tenant can create. Limits on object count ensure fairness and aim to avoid noisy neighbor issues from affecting other tenants that share a control plane.
Resource quotas are namespaced objects. By mapping tenants to namespaces, cluster admins can use quotas to ensure that a tenant cannot monopolize a cluster's resources or overwhelm its control plane. Namespace management tools simplify the administration of quotas. In addition, while Kubernetes quotas only apply within a single namespace, some namespace management tools allow groups of namespaces to share quotas, giving administrators far more flexibility with less effort than built-in quotas.
Quotas prevent a single tenant from consuming greater than their allocated share of resources hence minimizing the “noisy neighbor” issue, where one tenant negatively impacts the performance of other tenants' workloads.
When you apply a quota to namespace, Kubernetes requires you to also specify resource requests and limits for each container. Limits are the upper bound for the amount of resources that a container can consume. Containers that attempt to consume resources that exceed the configured limits will either be throttled or killed, based on the resource type. When resource requests are set lower than limits, each container is guaranteed the requested amount but there may still be some potential for impact across workloads.
Quotas cannot protect against all kinds of resource sharing, such as network traffic. Node isolation (described below) may be a better solution for this problem.
Data Plane Isolation
Data plane isolation ensures that pods and workloads for different tenants are sufficiently isolated.
Network isolation
By default, all pods in a Kubernetes cluster are allowed to communicate with each other, and all network traffic is unencrypted. This can lead to security vulnerabilities where traffic is accidentally or maliciously sent to an unintended destination, or is intercepted by a workload on a compromised node.
Pod-to-pod communication can be controlled using Network Policies, which restrict communication between pods using namespace labels or IP address ranges. In a multi-tenant environment where strict network isolation between tenants is required, starting with a default policy that denies communication between pods is recommended with another rule that allows all pods to query the DNS server for name resolution. With such a default policy in place, you can begin adding more permissive rules that allow for communication within a namespace. This scheme can be further refined as required. Note that this only applies to pods within a single control plane; pods that belong to different virtual control planes cannot talk to each other via Kubernetes networking.
Namespace management tools may simplify the creation of default or common network policies. In addition, some of these tools allow you to enforce a consistent set of namespace labels across your cluster, ensuring that they are a trusted basis for your policies.
More advanced network isolation may be provided by service meshes, which provide OSI Layer 7 policies based on workload identity, in addition to namespaces. These higher-level policies can make it easier to manage namespace-based multi-tenancy, especially when multiple namespaces are dedicated to a single tenant. They frequently also offer encryption using mutual TLS, protecting your data even in the presence of a compromised node, and work across dedicated or virtual clusters. However, they can be significantly more complex to manage and may not be appropriate for all users.
Storage isolation
Kubernetes offers several types of volumes that can be used as persistent storage for workloads. For security and data-isolation, dynamic volume provisioning is recommended and volume types that use node resources should be avoided.
StorageClasses allow you to describe custom "classes" of storage offered by your cluster, based on quality-of-service levels, backup policies, or custom policies determined by the cluster administrators.
Pods can request storage using a PersistentVolumeClaim. A PersistentVolumeClaim is a namespaced resource, which enables isolating portions of the storage system and dedicating it to tenants within the shared Kubernetes cluster. However, it is important to note that a PersistentVolume is a cluster-wide resource and has a lifecycle independent of workloads and namespaces.
For example, you can configure a separate StorageClass for each tenant and use this to strengthen isolation.
If a StorageClass is shared, you should set a reclaim policy of Delete
to ensure that a PersistentVolume cannot be reused across different namespaces.
Sandboxing containers
Kubernetes pods are composed of one or more containers that execute on worker nodes. Containers utilize OS-level virtualization and hence offer a weaker isolation boundary than virtual machines that utilize hardware-based virtualization.
In a shared environment, unpatched vulnerabilities in the application and system layers can be exploited by attackers for container breakouts and remote code execution that allow access to host resources. In some applications, like a Content Management System (CMS), customers may be allowed the ability to upload and execute untrusted scripts or code. In either case, mechanisms to further isolate and protect workloads using strong isolation are desirable.
Sandboxing provides a way to isolate workloads running in a shared cluster. It typically involves running each pod in a separate execution environment such as a virtual machine or a userspace kernel. Sandboxing is often recommended when you are running untrusted code, where workloads are assumed to be malicious. Part of the reason this type of isolation is necessary is because containers are processes running on a shared kernel; they mount file systems like /sys and /proc from the underlying host, making them less secure than an application that runs on a virtual machine which has its own kernel. While controls such as seccomp, AppArmor, and SELinux can be used to strengthen the security of containers, it is hard to apply a universal set of rules to all workloads running in a shared cluster. Running workloads in a sandbox environment helps to insulate the host from container escapes, where an attacker exploits a vulnerability to gain access to the host system and all the processes/files running on that host.
Virtual machines and userspace kernels are 2 popular approaches to sandboxing. The following sandboxing implementations are available:
- gVisor intercepts syscalls from containers and runs them through a userspace kernel, written in Go, with limited access to the underlying host.
- Kata Containers is an OCI compliant runtime that allows you to run containers in a VM. The hardware virtualization available in Kata offers an added layer of security for containers running untrusted code.
Node Isolation
Node isolation is another technique that you can use to isolate tenant workloads from each other. With node isolation, a set of nodes is dedicated to running pods from a particular tenant and co-mingling of tenant pods is prohibited. This configuration reduces the noisy tenant issue, as all pods running on a node will belong to a single tenant. The risk of information disclosure is slightly lower with node isolation because an attacker that manages to escape from a container will only have access to the containers and volumes mounted to that node.
Although workloads from different tenants are running on different nodes, it is important to be aware that the kubelet and (unless using virtual control planes) the API service are still shared services. A skilled attacker could use the permissions assigned to the kubelet or other pods running on the node to move laterally within the cluster and gain access to tenant workloads running on other nodes. If this is a major concern, consider implementing compensating controls such as seccomp, AppArmor or SELinux or explore using sandboxed containers or creating separate clusters for each tenant.
Node isolation is a little easier to reason about from a billing standpoint than sandboxing containers since you can charge back per node rather than per pod. It also has fewer compatibility and performance issues and may be easier to implement than sandboxing containers. For example, nodes for each tenant can be configured with taints so that only pods with the corresponding toleration can run on them. A mutating webhook could then be used to automatically add tolerations and node affinities to pods deployed into tenant namespaces so that they run on a specific set of nodes designated for that tenant.
Node isolation can be implemented using an pod node selectors or a Virtual Kubelet.
Additional Considerations
This section discusses other Kubernetes constructs and patterns that are relevant for multi-tenancy.
API Priority and Fairness
API priority and fairness is a Kubernetes feature that allows you to assign a priority to certain pods running within the cluster. When an application calls the Kubernetes API, the API server evaluates the priority assigned to pod. Calls from pods with higher priority are fulfilled before those with a lower priority. When contention is high, lower priority calls can be queued until the server is less busy or you can reject the requests.
Using API priority and fairness will not be very common in SaaS environments unless you are allowing customers to run applications that interface with the Kubernetes API, e.g. a controller.
Quality-of-Service (QoS)
When you’re running a SaaS application, you may want the ability to offer different Quality-of-Service (QoS) tiers of service to different tenants. For example, you may have freemium service that comes with fewer performance guarantees and features and a for-fee service tier with specific performance guarantees. Fortunately, there are several Kubernetes constructs that can help you accomplish this within a shared cluster, including network QoS, storage classes, and pod priority and preemption. The idea with each of these is to provide tenants with the quality of service that they paid for. Let’s start by looking at networking QoS.
Typically, all pods on a node share a network interface. Without network QoS, some pods may consume an unfair share of the available bandwidth at the expense of other pods. The Kubernetes bandwidth plugin creates an extended resource for networking that allows you to use Kubernetes resources constructs, i.e. requests/limits, to apply rate limits to pods by using Linux tc queues. Be aware that the plugin is considered experimental as per the Network Plugins documentation and should be thoroughly tested before use in production environments.
For storage QoS, you will likely want to create different storage classes or profiles with different performance characteristics. Each storage profile can be associated with a different tier of service that is optimized for different workloads such IO, redundancy, or throughput. Additional logic might be necessary to allow the tenant to associate the appropriate storage profile with their workload.
Finally, there’s pod priority and preemption where you can assign priority values to pods. When scheduling pods, the scheduler will try evicting pods with lower priority when there are insufficient resources to schedule pods that are assigned a higher priority. If you have a use case where tenants have different service tiers in a shared cluster e.g. free and paid, you may want to give higher priority to certain tiers using this feature.
DNS
Kubernetes clusters include a Domain Name System (DNS) service to provide translations from names to IP addresses, for all Services and Pods. By default, the Kubernetes DNS service allows lookups across all namespaces in the cluster.
In multi-tenant environments where tenants can access pods and other Kubernetes resources, or where stronger isolation is required, it may be necessary to prevent pods from looking up services in other Namespaces. You can restrict cross-namespace DNS lookups by configuring security rules for the DNS service. For example, CoreDNS (the default DNS service for Kubernetes) can leverage Kubernetes metadata to restrict queries to Pods and Services within a namespace. For more information, read an example of configuring this within the CoreDNS documentation.
When a Virtual Control Plane per tenant model is used, a DNS service must be configured per tenant or a multi-tenant DNS service must be used. Here is an example of a customized version of CoreDNS that supports multiple tenants.
Operators
Operators are Kubernetes controllers that manage applications. Operators can simplify the management of multiple instances of an application, like a database service, which makes them a common building block in the multi-consumer (SaaS) multi-tenancy use case.
Operators used in a multi-tenant environment should follow a stricter set of guidelines. Specifically, the Operator should:
- Support creating resources within different tenant namespaces, rather than just in the namespace in which the Operator is deployed.
- Ensure that the Pods are configured with resource requests and limits, to ensure scheduling and fairness.
- Support configuration of Pods for data-plane isolation techniques such as node isolation and sandboxed containers.
Implementations
There are two primary ways to share a Kubernetes cluster for multi-tenancy: using Namespaces (i.e. a Namespace per tenant) or by virtualizing the control plane (i.e. Virtual control plane per tenant).
In both cases, data plane isolation, and management of additional considerations such as API Priority and Fairness, is also recommended.
Namespace isolation is well-supported by Kubernetes, has a negligible resource cost, and provides mechanisms to allow tenants to interact appropriately, such as by allowing service-to-service communication. However, it can be difficult to configure, and doesn't apply to Kubernetes resources that can't be namespaced, such as Custom Resource Definitions, Storage Classes, and Webhooks.
Control plane virtualization allows for isolation of non-namespaced resources at the cost of somewhat higher resource usage and more difficult cross-tenant sharing. It is a good option when namespace isolation is insufficient but dedicated clusters are undesirable, due to the high cost of maintaining them (especially on-prem) or due to their higher overhead and lack of resource sharing. However, even within a virtualized control plane, you will likely see benefits by using namespaces as well.
The two options are discussed in more detail in the following sections:
Namespace per tenant
As previously mentioned, you should consider isolating each workload in its own namespace, even if you are using dedicated clusters or virtualized control planes. This ensures that each workload only has access to its own resources, such as Config Maps and Secrets, and allows you to tailor dedicated security policies for each workload. In addition, it is a best practice to give each namespace names that are unique across your entire fleet (i.e., even if they are in separate clusters), as this gives you the flexibility to switch between dedicated and shared clusters in the future, or to use multi-cluster tooling such as service meshes.
Conversely, there are also advantages to assigning namespaces at the tenant level, not just the workload level, since there are often policies that apply to all workloads owned by a single tenant. However, this raises its own problems. Firstly, this makes it difficult or impossible to customize policies to individual workloads, and secondly, it may be challenging to come up with a single level of "tenancy" that should be given a namespace. For example, an organization may have divisions, teams, and subteams - which should be assigned a namespace?
To solve this, Kubernetes provides the Hierarchical Namespace Controller (HNC), which allows you to organize your namespaces into hierarchies, and share certain policies and resources between them. It also helps you manage namespace labels, namespace lifecycles, and delegated management, and share resource quotas across related namespaces. These capabilities can be useful in both multi-team and multi-customer scenarios.
Other projects that provide similar capabilities and aid in managing namespaced resources are listed below:
Multi-team tenancy
Multi-customer tenancy
Policy engines
Policy engines provide features to validate and generate tenant configurations:
Virtual control plane per tenant
Another form of control-plane isolation is to use Kubernetes extensions to provide each tenant a virtual control-plane that enables segmentation of cluster-wide API resources. Data plane isolation techniques can be used with this model to securely manage worker nodes across tenants.
The virtual control plane based multi-tenancy model extends namespace-based multi-tenancy by providing each tenant with dedicated control plane components, and hence complete control over cluster-wide resources and add-on services. Worker nodes are shared across all tenants, and are managed by a Kubernetes cluster that is normally inaccessible to tenants. This cluster is often referred to as a super-cluster (or sometimes as a host-cluster). Since a tenant’s control-plane is not directly associated with underlying compute resources it is referred to as a virtual control plane.
A virtual control plane typically consists of the Kubernetes API server, the controller manager, and the etcd data store. It interacts with the super cluster via a metadata synchronization controller which coordinates changes across tenant control planes and the control plane of the super--cluster.
By using per-tenant dedicated control planes, most of the isolation problems due to sharing one API server among all tenants are solved. Examples include noisy neighbors in the control plane, uncontrollable blast radius of policy misconfigurations, and conflicts between cluster scope objects such as webhooks and CRDs. Hence, the virtual control plane model is particularly suitable for cases where each tenant requires access to a Kubernetes API server and expects the full cluster manageability.
The improved isolation comes at the cost of running and maintaining an individual virtual control plane per tenant. In addition, per-tenant control planes do not solve isolation problems in the data plane, such as node-level noisy neighbors or security threats. These must still be addressed separately.
The Kubernetes Cluster API - Nested (CAPN) project provides an implementation of virtual control planes.